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and injustice towards the environment. In addition, analysis was performed
in regard to the consequences of natural ecosystems destruction caused by
the development of artificial intelligence technologies due to the computing
energy-intensiveness, the growing impact of data centers on energy
consumption and problems with their cooling, the electronic waste formation
due to the rapid improvement of equipment, etc.

Results: the analysis shows a range of environmental, ethical and political-
legal issues associated with the training, use and development of artificial
intelligence, which consumes a significant amount of energy (mainly from
non-renewable sources). This leads to an increase in carbon emissions and
creates obstacles to further sustainable ecological development. Improper
disposal of artificial intelligence equipment exacerbates the problem
of e-waste and pollution of the planet, further damaging the environment.

© Zhuk A., 2023

@ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (CC BY 4.0)
(https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
BY original article is properly cited.

https://www.lawjournal.digital



https://doi.org/10.21202/jdtl.2023.39
https://crossmark.crossref.org/dialog/?doi=10.21202/jdtl.2023.40&domain=pdf&date_stamp=2023-12-15
https://www.budapestopenaccessinitiative.org
https://creativecommons.org/licenses/by/4.0/deed.ru
https://orcid.org/0000-0002-6295-6839

Journal of Digital Technologies and Law, 2023, 1(4) elSSN 2949-2483

Errors in artificial intelligence algorithms and decision-making processes
lead to environmental injustice and inequality. Al technologies may disrupt
natural ecosystems, jeopardizing wildlife habitats and migration patterns.

Scientific novelty: the environmental consequences of the artificial
intelligence use and further development, as well as the resulting
environmental violations and costs of sustainable development, were
studied. This leads to the scientific search for optimal strategies to minimize
environmental damage, in which legal scholars and lawyers will have
to determine ethical-legal and political-legal solutions at the national and
supranational levels.

Practical significance: understanding the environmental impact of Al
is crucial for policy makers, lawyers, researchers, and industry experts
in developing strategies to minimize environmental harm. The findings
emphasize the importance of implementing energy efficient algorithms,
switching to renewable energy sources, adopting responsible e-waste
management practices, ensuring fairness in Al decision-making and taking
into account ethical considerations and rules of its implementation.

For citation

Zhuk, A. (2023). Artificial Intelligence Impact on the Environment: Hidden Ecological
Costs and Ethical-Legal Issues. Journal of Digital Technologies and Law, 1(4),
932-954. https://doi.org/10.21202/jdtl.2023.40

Contents

Introduction
1. Energy consumption
1.1. The energy-intensive nature of Al computations
1.2. Data centers: Energy hogs of the Al infrastructure
1.3. Non-renewable energy sources and carbon emissions
1.4. Exploring the need for energy-efficient Al algorithms and hardware
2. Electronic Waste Generation
2.1. The rapid pace of Al hardware advancements
2.2. Device lifecycles and the e-waste predicament
2.3. Strategies for responsible e-waste management in Al
. Data Centre Infrastructure
. Understanding biases in Al training data
. Disruption of Natural Ecosystems
. Existing Regulations Related to Al's Environmental Impact
in the European Union
Conclusion
References

o o1 AW

https://www.lawjournal.digital



ttps://doi.org/10.21202/jdtl.2023.37

Journal of Digital Technologies and Law, 2023, 1(4) elSSN 2949-2483

Introduction

Artificialintelligence (Al) has emerged as a powerful and transformative force, revolutionising
various aspects of human lives, from healthcare to transportation, and from customer
service to financial systems. With its ability to process vast amounts of data and learn from
patterns, Al has opened up new frontiers of innovation and efficiency. However, as society
marvels at the advancements brought by Al, it becomes crucial to recognise and examine
the hidden ecological cost associated with this technological revolution.

As the demand for Al applications grows, the energy consumption required to power
the computational infrastructure also increases. According to a study conducted
by Strubell et al. (2019), training a single state-of-the-art Al model can emit as much
carbon dioxide as the lifetime emissions of five cars. Data centres, which are responsible
for housing and running Al systems, contribute significantly to this energy consumption,
often relying on non-renewable energy sources. The exponential growth of Al technology
raises concerns about the long-term environmental impact, as the environmental cost
associated with the Al revolution remains largely unnoticed and unaccounted for.

Moreover, the rapid evolution of Al hardware leads to shorter device lifecycles, resulting
in a surge of electronic waste (e-waste). The Global E-waste Monitor 2020 report indicates
that e-waste generation reached a record 53.6 million metric tonnes, with only 17.4 %
being officially collected and recycled'. Improper management of outdated Al hardware
components poses significant environmental risks, contributing to pollution and resource
depletion.

Whilst Al presents immense potential for environmental monitoring and conservation
efforts, its deployment can also disrupt natural ecosystems. Environmental monitoring
drones and autonomous vehicles used for resource exploration, for example, have
the potential to disturb wildlife habitats, interfere with migration patterns, and exacerbate
ecosystem imbalances. The unintended consequences of Al on biodiversity and
ecosystems necessitate careful consideration to ensure responsible and sustainable
deployment.

Inlight of these concerns, itbecomes essential to delve deeper into the environmental
footprint of Al and explore strategies for mitigating its negative ecological impacts.
This article will examine various aspects of the ecological cost associated with Al,
highlighting the need for energy-efficient algorithms, responsible e-waste management
practices, sustainable data centre infrastructure, and ethical considerations in Al

T Forti, V, Baldé, C. P, Kuehr, R., & Bel, G. (2020). The global e-waste monitor 2020: Quantities, flows and the
circular economy potential. United Nations University (UNU), International Telecommunication Union (ITU)

& International Solid Waste Association (ISWA). Bonn; Geneva; Rotterdam.
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decision-making. By shedding light on these issues, it aims to foster discussions and
actions that lead to a more environmentally conscious approach to Al development
and deployment.

1. Energy consumption

As society continues to harness the power of Al, it becomes imperative to acknowledge and
tackle the substantial energy consumption that accompanies this technological revolution.
This section explores the energy-intensive nature of Al computations, the significant energy
demands of data centers, and the concerning reliance on non-renewable energy sources.
By shedding light on the hidden ecological costs of the Al revolution, we can gain a deeper
understanding of the environmental implications associated with Al's remarkable impact
on various domains of human life.

Al computations are known for their substantial energy requirements due to the
processing of vast amounts of data and the execution of complex algorithms. Training
state-of-the-art Al models, in particular, consumes a significant amount of energy, with large-
scale models consuming as much energy as hundreds of megawatt-hours, equivalent to the
energy required to power thousands of homes for several months (Strubell et al., 2019).
The computational demands and iterative processes involved in training Al models
contribute to their high energy consumption. These energy requirements are driven by
the need to process large datasets, perform complex matrix operations, and optimise
model parameters through multiple iterations. Understanding the energy footprint of Al
computations is essential for comprehending the environmental impact associated with
their widespread adoption.

Data centers play a vital role in supporting Al systems by housing and running
the computational infrastructure. However, they contribute significantly to the overall
energy consumption of Al. These facilities require substantial electricity to power
servers, cooling systems, and networking equipment. The high-performance computing
capabilities necessary for Al computations result in increased energy demands for
data centers. Hanus et al. (2023) underscore the energy-intensive nature of data
centers and the challenges they face in achieving energy efficiency. The growth of Al
technology has led to an increase in the number and size of data centers, amplifying their
environmental impact. The inefficient utilisation of computing resources and cooling
systems in data centers further exacerbates their energy consumption and environmental
footprint.

A pressing concern regarding Al's energy consumption is the reliance on non-renewable
energy sources. Conventional power grids, often fueled by fossil fuels, are the primary sources
of electricity for Al computations. This reliance on non-renewable energy exacerbates
greenhouse gas emissions and environmental challenges. Serban et al. (2020) stress the
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importance of transitioning to renewable energy sources for sustainable Al infrastructure.
Incorporating renewable energy solutions, such as solar or wind power, in data centers
can reduce the carbon footprint of Al systems and mitigate their environmental impact.
The adoption of renewable energy technologies not only reduces greenhouse gas emissions
but also promotes the development of a more sustainable energy infrastructure to support
the growing demands of Al computations.

1.1. The energy-intensive nature of Al computations

The energy-intensive nature of Al computations has become a growing concern due to the
significant energy requirements associated with training and running sophisticated Al
models (Henderson et al., 2018). As Al applications continue to advance and become more
complex, the demand for computational power has skyrocketed, leading to increased energy
consumption.

One primary contributor to the energy consumption of Al computations is the training
phase. Training a deep learning model involves feeding vast amounts of data into neural
networks, which then adjust theirinternal parameters through iterative processes to optimise
performance. This training process often requires multiple iterations over large datasets,
utilising powerful hardware infrastructure such as graphics processing units (GPUs)
or specialised tensor processing units (TPUs) (Strubell et al., 2019).

These hardware components are highly energy-intensive, consuming significant
amounts of electricity to perform the complex calculations necessary for training Al models.
The energy consumption during training can range from several hundred kilowatt-hours
(kWh) to several thousand kWh, depending on the size and complexity of the model, the size
of the dataset, and the hardware infrastructure used (Schwartz et al., 2020).

For example, a study by Schwartz et al. (2020) estimated that training a single state-of-
the-art language model can emit as much carbon dioxide as the lifetime emissions of five
cars. This highlights the substantial environmental impact associated with the energy
consumption of Al computations.

In addition to the training phase, the deployment and inference of Al models also
contribute to energy consumption. Once a model is trained, it needs to be deployed and
run on various devices or cloud servers to make predictions or perform specific tasks
in real-time. This inference phase also requires computational resources, although typically
less intensive compared to training. However, when Al models are deployed at scale,
the cumulative energy consumption can still be substantial (Strubell et al., 2019).

The energy-intensive nature of Al computations raises concerns about the environmental
impact and sustainability of Al technologies. As Al applications continue to proliferate
across industries and sectors, the demand for computational resources will only increase,
leading to even higher energy consumption. It becomes crucial to explore energy-efficient
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computing architectures, develop algorithms that minimise computational requirements,
and adopt renewable energy sources to power Al infrastructure (Ding et al., 2021).

Efforts are underway to address these challenges. Researchers and industry experts
are actively working on developing more energy-efficient algorithms and hardware
architectures, exploring techniques such as model compression, quantisation, and
distributed training. These approaches aim to reduce the computational requirements of Al
models without significantly compromising performance (Ding et al., 2021). Furthermore,
there is an increasing focus on optimising data centre operations and adopting renewable
energy sources to power Al infrastructure, reducing the carbon footprint associated with Al
computations (Strubell et al., 2019).

1.2. Data centers: Energy hogs of the Al infrastructure

Data centers play a critical role in supporting the Al infrastructure, serving as the
backbone for storing and processing vast amounts of data. However, these data centers
are also significant energy consumers, raising concerns about their environmental impact
(Dhar, 2020).

Data centers house the servers, networking equipment, and storage systems required
to handle the computational demands of Al workloads. These facilities operate around
the clock, consuming substantial amounts of electricity for powering and cooling
the equipment, as well as providing uninterruptible power supply systems (UPSS)
for backup (Shah et al., 2010).

The energy consumption of data centersis driven by various factors, including the number
and efficiency of servers, the cooling systems, and the overall infrastructure design. Server
racks and cooling equipment consume a significant portion of the energy, with cooling alone
accounting for up to 40% of the total energy consumption (Masanet et al., 2020). A study
estimated that data centers globally consumed approximately 196 to 400 terawatt-hours
(TWh) of electricity in 2020, accounting for about 1 % of the global electricity consumption?.
The energy efficiency of data centers has become a major focus in reducing their
environmental footprint. Efforts are underway to improve server efficiency, optimize cooling
systems, and design data centers with energy-efficient principles in mind. Techniques such
as server virtualization, advanced cooling technologies, and power management strategies
are being implemented to enhance energy efficiency (Shah et al., 2010).

Furthermore, there is a growing interest in adopting renewable energy sources to power
data centers. Many companies are investing in renewable energy projects and purchasing
renewable energy certificates (RECs) to offset their electricity consumption (Dhar, 2020).
For example, Google announced in 2017 that it had achieved a milestone of purchasing

2 Garcia, C. (2022). The Real Amount of Energy A Data Center Uses. https://clck.ru/36kxEN
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enough renewable energy to match 100 % of its global electricity consumption for its data
centers and offices3.

To address the energy challenges posed by data centers, industry collaborations,
government regulations, and research initiatives are being established. These efforts aim
to develop standards, promote best practices, and encourage the adoption of energy-
efficient technologies in data center operations (Shah et al., 2010). In the UK, the Data Centre
Alliance is actively working to drive energy efficiency improvements and sustainability in the
data center industry4.

1.3. Non-renewable energy sources and carbon emissions

Thereliance of Alinfrastructure on non-renewable energy sources has significantimplications
for carbon emissions and the overall environmental impact. The generation of electricity
from fossil fuels, such as coal and natural gas, contributes to greenhouse gas emissions
and exacerbates climate change (Ram et al., 2018). In fact, the carbon emissions from data
centers alone are estimated to rival those of the aviation industry®.

Data centers, which house the computational infrastructure for Al, are known to be
energy-intensive facilities. They require substantial amounts of electricity to power
the servers, cooling systems, and other supporting infrastructure. In many regions, the grid
electricity used to power data centers predominantly comes from non-renewable sources.
For example, in the United Kingdom, a significant portion of the electricity generation still
relies on fossil fuels®.

The carbon emissions associated with non-renewable energy sources directly contribute
to the carbon footprint of Al systems. A study by Rolnick et al. (2022) estimated that training
alarge Al model can emit as much carbon as an average American car over its entire lifetime.

To address these concerns, there is a growing movement within the Al community
to transition towards renewable energy sources and reduce carbon emissions. Several
major technology companies, including Microsoft and Amazon, have made commitments
to achieve carbon neutrality and rely on renewable energy for their data centers’.

Moreover, governments and organizations are taking steps to promote the adoption
of renewable energy in the Al sector. The European Union, for instance, has set targets

Google. (2021). Google reaches 100% renewable energy goal. https://clck.ru/36kxG4
4 Data Centre Alliance. (n.d.). About the DCA. https://clck.ru/36kxHA

Lim, S. (2022, July 14). Media industry’s pollution equivalent to aviation, study finds. Campaign. https://
clck.ru/36kxHu

Department for Business, Energy & Industrial Strategy. (2020). BEIS Electricity Generation Costs. https://
clck.ru/36kxKs

Microsoft. (2022). Microsoft announces plan to be carbon negative by 2030. https://clck.ru/36kxLJ ; See
also Amazon. (n.d.). Amazon and Global Optimism announce The Climate Pledge. https://clck.ru/36kxMP
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to increase the share of renewable energy and reduce greenhouse gas emissions in its
member states®.

Additionally, research efforts are focused on developing energy-efficient algorithms
and hardware designs to minimise energy consumption and carbon emissions during
Al computations. Techniques like model compression, quantisation, and specialised
hardware architectures are being explored to optimise the energy efficiency of Al systems
(Strubell et al., 2019).

1.4. Exploring the need for energy-efficient Al algorithms and hardware

As the demand for Al continues to grow, there is a pressing need to develop energy-efficient
algorithms and hardware to mitigate the environmental impact of Al computations. The
energy consumption of Al systems is a significant concern, considering the carbon emissions
associated with non-renewable energy sources (Rolnick et al., 2022).

Researchers are actively exploring techniques to improve the energy efficiency
of Al algorithms. Model compression, for instance, aims to reduce the computational
requirements of deep neural networks by pruning unnecessary connections or reducing
the precision of weights and activations (Han et al., 2015). This approach can significantly
decrease the energy consumption and inference time without sacrificing model
performance.

Another approach is quantisation, which involves representing numerical values
with fewer bits. By reducing the precision of parameters and activations, quantisation
reduces memory usage and computational complexity, leading to energy savings during
both training and inference (Hubara et al., 2016). Efforts are also being made to improve
the energy efficiency of training algorithms. Gradient compression techniques, such as
sparsification and quantisation, aim to reduce the communication overhead between
distributed devices during distributed training, thus decreasing the energy consumption
(Alistarh et al., 2017). Additionally, advancements in optimisation algorithms and learning
rate schedules can minimise the number of training iterations required, resulting in energy
savings (You et al., 2017).

The development of energy-efficient Al hardware is also a crucial aspect of mitigating
energy consumption. Traditional computing architectures are often not optimised for Al
workloads, leading to inefficient energy usage. To address this, researchers are exploring
new hardware designs, including neuromorphic computing and memristive devices, which
mimic the structure and functioning of the human brain, offering potential energy efficiency
improvements (Merolla et al., 2014; Prezioso et al., 2015).

8 European Commission. (n.d.). EU Climate Action. https://clck.ru/36kxSS

https://www.lawjournal.digital




Journal of Digital Technologies and Law, 2023, 1(4) elSSN 2949-2483

2. Electronic Waste Generation

In addition to the energy-intensive nature of Al computations, the hardware used in Al
systems also contributes to another significant environmental challenge: electronic waste
generation. The rapid pace of technological advancement and the constant need for
more powerful hardware result in a high turnover rate, leading to a growing accumulation
of electronic waste (Ferro et al.,, 2021).

Al hardware, including GPUs, application-specific integrated circuits (ASICs), and other
specialised components, have relatively short lifespans due to the relentless progress
in technology. As newer generations of hardware are developed, older ones quickly become
obsolete and are often discarded, exacerbating the issue of electronic waste®.

The disposal of Al hardware contributes to the release of hazardous substances
and materials into the environment when not properly managed. These substances can
contaminate soil, water, and air, posing risks to human health and ecosystems. The improper
disposal of electronic waste not only leads to environmental degradation but also wastes
valuable resources embedded in the hardware. Moreover, the disposal of hardware that
contains toxic materials such as lead, mercury, and flame retardants can further contribute
to pollution if not handled properly'°.

To tackle the issue of electronic waste generation in the Al industry, it is crucial
to implement sustainable practices. One approach is to promote the reuse and recycling
of Al hardware. By refurbishing and remanufacturing older hardware, its lifespan can be
extended, reducing the need for constant production of new devices (Ferro et al., 2021).
Additionally, implementing take-back programs and establishing recycling facilities ensure
that discarded hardware is properly managed and valuable materials are recovered for
reuse’’.

In the design and manufacturing of Al hardware, eco-friendly principles should be
embraced. Using materials with lower environmental impacts, designing for recyclability,
and reducing the presence of hazardous substances can contribute to a more sustainable
hardware lifecycle. Adopting modular designs that allow for component replacement and
upgrading can also help prolong the usefulness of Al hardware, reducing the frequency
of complete device replacement (Ferro et al., 2021).

9 Baldé, C. P, Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitor 2017: Quantities,
flows and resources. United Nations University, International Telecommunication Union, and International
Solid Waste Association.

10 pid.
1 bid.
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2.1. The rapid pace of Al hardware advancements

The hardware technologies in the field of Al are undergoing rapid advancements, fueled
by continuous innovation that leads to the creation of increasingly powerful and efficient
Al systems (Amodei et al., 2016). A notable development in Al hardware is the evolution
of GPUs into a key component for Al computations. Originally designed for graphics
rendering, GPUs have found extensive adoption in Al due to their ability to handle parallel
processing tasks effectively (Amodei et al., 2016). Their high throughput and computational
power make them well-suited for training and running Al models.

Furthermore, specialised hardware known as ASICs has emerged to cater specifically
to Al workloads. ASICs offer improved performance and energy efficiency by customising
the hardware architecture to optimise Al algorithm execution (Amodei et al., 2016). These
dedicated Al chips provide higher computational density and faster processing speeds
compared to general-purpose processors.

The rapid advancements in Al hardware have been instrumental in enabling significant
breakthroughs across various Al applications. In computer vision, for example,
the availability of high-performance hardware has facilitated complex image recognition and
object detection tasks with remarkable accuracy (Amodei et al., 2016). Similarly, in natural
language processing, powerful hardware accelerates the training and inference of language
models, enabling applications such as machine translation and sentiment analysis.

However, the swift progress in Al hardware also brings challenges. The rapid turnover
of hardware due to newer generations becoming available leads to a significant accumulation
of electronic waste. Outdated hardware components contribute to the growing e-waste
problem, requiring proper disposal and recycling measures to minimise environmental
impact (Ferro et al., 2021).

The continuous introduction of new Al hardware also presents a learning curve for
developers and researchers. Staying up to date with the latest hardware technologies
demands constant adaptation, training, and investment, posing challenges for those
involved in Al development (Amodei et al., 2016). Furthermore, optimising Al algorithms and
software to leverage the capabilities of different hardware architectures adds complexity
to the development process.

2.2. Device lifecycles and the E-waste predicament

The rapid advancement of Al technologies has led to a proliferation of electronic devices,
resulting in a concerning rise in electronic waste, or e-waste, which poses significant
environmental and health risks'2. The lifecycles of Al hardware play a crucial role in determining
the extent of e-waste generated and the environmental impact associated with it.

12 pjd.
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The lifecycle of Al hardware begins with the extraction of raw materials and
the manufacturing process. The production of Al devices involves the extraction of precious
metals, rare earth elements, and other valuable materials, many of which are non-renewable
and require substantial energy inputs (Ferro et al.,, 2021). The extraction and processing
of these materials contribute to environmental degradation and often involve hazardous
substances that can harm ecosystems and human health.

As Al hardware advances rapidly, the lifecycle of devices becomes shorter, with newer
models frequently replacing older ones. This phenomenon, known as planned obsolescence,
exacerbates the e-waste predicament, as outdated Al devices are discarded, leading
to a significantaccumulation of electronic waste'3. E-waste contains hazardous components
such as lead, mercury, and flame retardants, which can leach into the environment and
contaminate soil, water sources, and air if not properly managed.

The improper disposal and inadequate recycling of e-waste further compound the
problem. Many electronic devices end up in landfills or are incinerated, releasing toxic
substances and contributing to air and soil pollution™. Inadequate recycling practices also
result in the loss of valuable resources that could be recovered and reused.

Policymakers play a crucial role in establishing regulations and incentives to promote
proper e-waste management. Policies such as extended producer responsibility (EPR) can
hold manufacturers accountable for the environmental impact of their products throughout
their lifecycle, encouraging them to adopt sustainable practices and invest in recycling
infrastructure™. Additionally, the development of effective collection systems, recycling
programmes, and refurbishment initiatives can help divert Al devices from landfills and
promote their reuse.

The circular economy approach offers a promising solution to the e-waste predicament.
It emphasises the reuse, refurbishment, and recycling of electronic devices, aiming to minimise
resource consumption and environmental impact (Ferro et al., 2021). By adopting circular
economy principles, Al hardware can be designed and managed in a way that maximises its
lifespan and reduces the need for constant upgrades, thus mitigating the generation of e-waste.

2.3. Strategies for responsible e-waste management in Al

Inorderto address the environmental concerns associated with electronic waste generated
by Al hardware, several strategies have been proposed to promote responsible e-waste

13 Baldg, C. P, Forti, V,, Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitor 2017: Quantities,
flows and resources. United Nations University, International Telecommunication Union, and International
Solid Waste Association.
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management throughout the Al lifecycle. These strategies aim to mitigate the adverse
impacts of e-waste disposal and contribute to a more sustainable approach to Al
technology.

1. Incorporating Design for Disassembly (DfD) and Design for Recycling (DfR) principles
in the design and manufacturing of Al hardware can facilitate the efficient separation and
recycling of components. By ensuring that devices are designed with ease of disassembly
and recyclability in mind, the amount of e-waste generated can be reduced.

2. The concept of Extended Producer Responsibility holds manufacturers accountable
for the entire lifecycle of their products, including their proper disposal (Kahhat et al., 2008).
Implementing EPR regulations specific to Al hardware can incentivize manufacturers
to design products with recyclability in mind and take responsibility for their environmentally
sound disposal and recycling.

3. Establishing effective take-back and recycling programs is crucial for facilitating
the responsible disposal of Al hardware. Manufacturers can collaborate with specialised
e-waste recyclers or set up collection points to ensure the proper recycling of Al devices and
prevent them from ending up in landfills or informal recycling facilities.

Embracing the principles of a circular economy can help minimise e-waste generation
by promoting resource efficiency and product reuse (Geissdoerfer et al., 2017). Strategies
such as refurbishing and repurposing Al hardware, as well as creating secondary markets
for used devices, can extend the lifespan of Al systems and reduce the need for new
production.

Continued research and development of advanced recycling technologies are
essential for improving the efficiency and effectiveness of e-waste recycling (Widmer et al.,
2005). Innovations such as hydrometallurgical and biotechnological processes can extract
valuable materials from Al hardware while minimising environmental impact and reducing
the reliance on traditional extraction methods.

By implementing these strategies, responsible e-waste management practices can
be integrated into the Al industry, leading to a more sustainable approach to Al hardware
production, use, and disposal.

3. Data Centre Infrastructure

Data centres have witnessed significant growth in recent years due to the increasing demand
for digital services. This expansion has resulted in a heightened environmental impact.
The construction and operation of data centres require substantial land and resources,
contributing to land use changes and habitat destruction (Mell & Grance, 2011). Moreover,
the proliferation of data centres in urban areas has raised concerns about their impact
on local communities and infrastructure.

https://www.lawjournal.digital
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Data centres are renowned for their high energy consumption. The constant operation
of servers, networking equipment, and cooling systems demands a considerable amount
of electricity. Cooling data centres poses particular challenges. The heat generated by servers
and other IT equipment needs efficient dissipation to maintain optimal operating conditions.
However, traditional cooling methods, such as air conditioning, are energy-intensive and
inefficient. This has prompted the exploration of innovative cooling technologies, including
liquid cooling and advanced airflow management systems, to enhance energy efficiency
and reduce the environmental impact of data centres (Masanet et al., 2020).

Water is a vital resource used in data centres for cooling purposes. However,
the substantial water consumption of data centres can strain local water resources,
especially in regions already grappling with water scarcity or competing demands. Cooling
towers, relying on evaporation, can consume significant volumes of water.

To address the environmental impact of data centres, industry stakeholders are actively
exploring and implementing sustainable practices. These practices include:

Energy-efficient design: Data centres can adopt energy-efficient design principles, such
as optimising server utilisation, improving power distribution systems, and utilising energy-
efficient hardware. These measures can significantly reduce energy consumption and
carbon emissions (Beloglazov et al., 2011).

Transitioning to renewable energy sources, such as solar or wind power, can assist
data centres in reducing their dependence on fossil fuels and decreasing greenhouse gas
emissions.

Rather than dissipating the heat generated by data centres, waste heat can be
captured and utilised for other purposes, such as heating buildings or generating electricity.
This approach maximises the energy efficiency of data centres and reduces their overall
environmental impact.

Implementing water-efficient cooling technologies, such as closed-loop cooling
systems and water-saving cooling towers, can help reduce water consumption in data
centres. Additionally, recycling and reusing water within data centre operations can minimise
the strain on local water resources.

By adopting these sustainable practices, data centres can strike a balance between
meeting the increasing demand for digital services and minimising their environmental
impact, contributing to a more sustainable and responsible digital infrastructure.

4. Understanding biases in Al training data

Al algorithms heavily rely on training data to make informed decisions. However,
these datasets can often contain inherent biases, which can lead to biased outcomes
in environmental decision-making. Biases in training data can arise from various sources,
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including historical data reflecting existing societal inequalities and systemic biases
(Caliskan et al., 2017). It is crucial to recognise and address these biases to ensure fair
and equitable environmental decision-making processes.

Biased Al applications in environmental decision-making can exacerbate existing
environmental disparities faced by marginalised communities. For example, if Al algorithms
are trained on datasets that disproportionately represent affluent areas, decisions
regarding resource allocation or environmental policies may neglect the needs and
concerns of marginalised communities (Benjamin, 2019). This further marginalises these
communities, perpetuating environmental injustices.

Biased Al applications can perpetuate and amplify inequalities by reinforcing
existing social, economic, and environmental disparities. For instance, if Al algorithms
are biased against certain demographics or geographic areas, it can lead to unequal
distribution of environmental benefits, such as access to clean air, water, or green
spaces. Furthermore, biased algorithms can result in discriminatory outcomes, such
as disproportionate pollution burdens or inadequate environmental protections
in marginalised communities.

To mitigate the biases and promote fairness in Al environmental decision-making,
several measures need to be taken:

It is essential to ensure that Al training datasets encompass diverse perspectives
and accurately represent the affected communities. This requires careful curation of data
to address underrepresentation and avoid reinforcing existing biases (Sweeney, 2013).

Developing Al algorithms that are transparent and explainable allows for scrutiny
and identification of biases. This helps stakeholders, including affected communities,
to understand how decisions are made and challenge potential biases (Burrell, 2016).

Continual monitoring and evaluation of Al systems are crucial to identify and rectify
biases that may emerge over time. This involves ongoing assessment of Al applications’
impacts on different populations and their alignment with equity and fairness goals
(Crawford & Calo, 2016).

Involving affected communities in the design, implementation, and evaluation of Al
environmental decision-making processes can help ensure fairness and equity.

By addressing biases in Al training data, acknowledging environmental disparities
faced by marginalised communities, and implementing measures to promote
fairness and equity, it is possible to mitigate the risks of Al amplifying environmental
injustices. Responsible and inclusive Al applications can support informed and
equitable decision-making processes that contribute to a more just and sustainable
environment for all.
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5. Disruption of Natural Ecosystems

The expansion of Al technologies and their integration into various sectors has raised
concerns about their potential impact on natural ecosystems. One area of concern is
the disruption of wildlife habitats and migration patterns. Al-driven infrastructure, such as
the construction of data centers and communication networks, often requires significant
land use, leading to habitat fragmentation and loss. This disruption can have adverse effects
on wildlife populations by limiting their access to resources and disrupting crucial migration
routes, ultimately posing a threat to biodiversity and ecological resilience.

The use of Al for environmental monitoring and conservation presents both opportunities
and challenges. On one hand, Al enables efficient data collection, analysis, and interpretation,
thereby enhancing our understanding of biodiversity, climate change, and ecosystem health.
It enables us to detect patterns, make predictions, and inform conservation strategies.
On the other hand, an overreliance on Al may result in a reduction in field-based research
and human involvement, potentially overlooking the nuanced ecological processes that can
only be observed through direct observation (Koh & Wich, 2012).

To mitigate the ecological disruption caused by Al, it is crucial to adopt responsible
deployment practices. This includes conducting comprehensive environmental impact
assessments before implementing Al technologies, evaluating potential risks to ecosystems,
and identifying appropriate mitigation strategies. Moreover, it is important to integrate Al
into existing conservation strategies and involve local communities in decision-making
processes. This participatory approach fosters a holistic understanding of ecological
systems and facilitates the co-design of Al applications that benefit both biodiversity and
human well-being.

6. Existing Regulations Related to Al's Environmental Impact
in the European Union

The growth of artificial intelligence has prompted governments and regulatory bodies
to address its potential environmental impact. Some countries and regions have already
taken steps to regulate the ecological cost of Al.

In the European Union, the EcoDesign Directive (2009/125/EC) has been extended
to cover servers and data storage products since March 2020. This regulation sets minimum
energy efficiency requirements for these products, including those used in Al hardware.
It aims to reduce energy consumption and curb the environmental impact of data centers
and other Al infrastructure components’®.

16 Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a
framework for the setting of ecodesign requirements for energy-related products (recast) (Text with EEA
relevance). (2009). Official Journal of the European Union, L 285, 10-35. https://clck.ru/36kxU5
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Along with the EcoDesign Directive, the Waste Electrical and Electronic Equipment
(WEEE) Directive plays a crucial role in the sustainable management of electronic waste,
including Al hardware components. The WEEE Directive outlines rules for the proper
handling and disposal of electronic waste, ensuring that discarded Al hardware is managed
in an environmentally responsible manner. The responsibility for the collection and recycling
of e-waste is placed on manufacturers and users, promoting the circular economy and
minimizing the environmental impact of Al hardware disposal’’.

As part of the WEEE Directive's evaluation process, a public consultation on the EU
Directive on waste electrical and electronic equipment was scheduled for June 2023.
This consultation allows stakeholders and the public to provide feedback and input on the
effectiveness and future improvements of the WEEE Directive.

The European Union has also implemented the Regulation (EU) 2019/424 on the eco-
designrequirements for servers and data storage products. Thisregulation, which entered into
force in March 2020, aims to set minimum energy efficiency requirements for these products,
including those used in Al hardware, with the purpose of reducing energy consumption and
curbing the environmental impact of data centers and other Al infrastructure components™®.

These regulations within the European Union demonstrate the commitment to address
the environmental impact of artificial intelligence and promote sustainable practices in
the technology sector. By setting energy efficiency standards and promoting responsible
e-waste management, the EU aims to foster a greener and more environmentally friendly
approach to Al development and deployment.

Conclusion

In conclusion, when reflecting on the hidden ecological cost of Al, it becomes evident
that we must acknowledge and address the environmental implications that come
with its development and integration. The energy-intensive nature of Al computations,
the generation of electronic waste, the disruption of natural ecosystems, and the potential
for biased decision-making all highlight the need for proactive measures. By recognising
the importance of sustainable practices such as energy-efficient algorithms, transitioning
to renewable energy sources, responsible e-waste management, and ethical considerations,
we can strive towards a more harmonious and environmentally conscious integration of Al.

17" Consolidated text: Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on
waste electrical and electronic equipment (WEEE) (recast) (Text with EEA relevance). https://clck.ru/36kxYS

18 Commission Regulation (EU) 2019/424 of 15 March 2019 laying down ecodesign requirements for
servers and data storage products pursuant to Directive 2009/125/EC of the European Parliament and of
the Council and amending Commission Regulation (EU) No 617/2013 (Text with EEA relevance). (2019).
Official Journal of the European Union, L 74, 46—66. https://clck.ru/36kxbm
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It is our collective responsibility to navigate the path towards a better future where
Al benefits both humanity and the planet. By prioritising environmental sustainability
and taking proactive steps to mitigate the ecological footprint of Al, we can create a future
that harnesses its potential while preserving and protecting our natural resources. Through
collaboration, research, and the development of policies and regulations, we can shape
the evolution of Al towards a more sustainable and ethically sound direction.
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anropuTMmuyeckas Lienb: BbiSIBNIeHWE CKPbITbIX 3KOJIOTMYECKUX W3AEPXKEK, CBSA3AHHbIX
npeaB3sATOCTb, C pa3paboTKOW, BHEAPEHUEM U Pa3BUTUEM TEXHOJIOTUA UCKYCCTBEHHO-
MCKYCCTBEHHbIW MHTENIEKT, roO WHTENNEKTa, C Lefiblo ero yCTOMYMBOM M FapMOHWYHON MHTerpaumu
noTpe6neHne aHeprum, C PasNYHbIMU CEKTOPAMM SKOHOMMUKU NyTeM OMpeaeneHns oNTUMasbHbIX
npaeo, HPABCTBEHHO-3TUYECKMX U MOIMTUKO-NPABOBbIX CTPATErnii.

NpUpoAHbI€ 3KOCUCTEMDbI, MeTogbl: B OCHOBE NPOBEAEHHOr0 UCCNENoBaHNUA NIEXUT 3KOMOrMYeCcKuin
ycTonuMBOE pasBuTHe, MoAxofd K paspaboTKe U BHEAPEHUIO UCKYCCTBEHHOrO WHTESNEKTa, MeX-
LieHTP 06paboTKM laHHbIX, OVUCUMNIIMHAPHbBIA U MONIUTUKO-NPABOBOW aHaNIM3 9KOMOrnYeckux npobnem
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K OKpyXatoLlei cpefe. Kpome Toro, noaBepXXeHbl aHann3y Bbl3aBaHHbIe pas-
BUTMEM TEXHOJIOTUIA UCKYCCTBEHHOMO MHTESSIEKTA MOC/IEACTBUSA paspyLLEHNTA
NPUPOAHBIX IKOCUCTEM, OBYCIOBIIEHHbIE SHEPrOEMKMNM XapaKTePOM CBA3aH-
HbIX C HUM BbIYMCIEHUIA, PACTYLLMM BIIUSAHUEM LIEHTPOB 06PabOTKUN AaHHbIX
Ha noTpebreHne SHeprum 1 NPo6eM C UX OXTaXKAEHNEM, 06pa3oBaHMUE 3MekK-
TPOHHbIX OTXOAOB M3-3a 6bICTPOro COBEPLUEHCTBOBAHUA 060PYAOBAHNA U Ap.

PesynbTaTbl: MpOBefeHHbIA aHanM3 MokasblBaeT pasHoobpasue 3Ko-
JIOTUYECKMX, 3TUYECKMX W MOJIMTUKO-NPABOBbIX MNPO6/eM, CBSA3aHHbIX
C 06y4YyeHMeM, UCMONb30BaHMEM U Pa3BUTMEM UCKYCCTBEHHOIO UHTENsIeK-
Ta, NOTPe6NAOLWEro 3HaYMTe/IbHOe KOIMYECTBO 3Heprn (B OCHOBHOM U3
HEeBO306HOB/IAAEMbIX UCTOYHUKOB), UTO MPUBOAMUT K YBESIMYEHMUIO BbIGpO-
COB yrfiepofia U co3pfaeT NpPensTCTBUSA ANA OallbHENLIEro yCTOMUYNBOro
9KOJIOrMYECKOro pasBuTUs. HenpaBwuibHas yTuausauusi o60pyaoBaHMs
WCKYCCTBEHHOIO MHTENNEKTa YCyrybnseT npobsiiemMy 3MeKTPOHHbIX OTXO-
[lOB, 3arpsisHeHWs NiaHeTbl, elle 60bllie HaAHOCA yLiep6 OKpy>KatoLel
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NPUHATUA peLueHm7| BeAyT K HecCrnpaBea/MBOCTU B OTHOLLUEHUU OKpY>Kato-
Len cpeabl U 9KOJTIOrM4eCKOMY HEepaBEHCTBY. TexHonorum NUCKYCCTBEHHOIo
MHTeNnJ1IeKTa MOryT HapywaTtb NpupoaHble 3KOCUCTEMbI, CTaBA noAa yrposy
cpeny 06UTaHUSA OUKUX XXUBOTHbIX 1 MOAENN MUrpauunn.

HayuyHasi HOBM3Ha: UccneaoBaHWe 9KOJIOrMYEeCKMX MOCNEACTBUI UCMOSIb-
30BaHUs U gasnibHeWLWero pasBUTUS UCKYCCTBEHHOIO MHTE/IEKTA, Bbl3BaH-
HbIX B CBSI3M C 3TUM 3KOJIOMMYECKMX HAPYLUEHWUI U N3EPXKEK YCTONYMBOIO
pa3BUTKSA NMO3BOJISIET ONPeAEeNUTb HayYHbI1 MOUCK ONTUMasbHbIX CTpaTe-
M MMHUMU3ALMKM Bpefa OKpy)Katlollen cpefie, B KOTOPOM NpaBoBeamM
N ropucTaMm NpeacTouT YyCTaHOBUTb 3TUKO-NPaBOBble U NOMUTUKO-NPaBo-
Bbl€ pelLleHUs Ha HaLMOoHaIbHOM U HaJHaLMOHAIbHOM YPOBHSAX.

MpakTnyeckasa 3Ha4YMMOCTb: MOHMMaHME 3KONOrMYeCcKoro BO3AenCTBMS UC-
KYCCTBEHHOIO MHTes/IeKTa UMEET peLlatoLee 3HaueHune Ans NoNTUKOB, topu-
CTOB, UccnefoBaTeNiei, oTpacneBbiX CNeLMannucToB Npu paspaboTke cTpa-
TerMn MuHUMM3aUUK Bpefa oKpyxatowlen cpepe. onyyeHHble AaHHble
noayepKMBalOT BaXKHOCTb peanu3auun aHeproa@deKTUBHbIX anropuTMoB,
nepexofga Ha BO306HOBMSIEMble WCTOYHUKM IHEPruK, BHEOAPEHUs OTBET-
CTBEHHOW NPaKTUKK 06paLleHns C 3/IEKTPOHHbIMU O0TXoAamu, obecnedyeHus
cnpaBeg/iMBOCTU MpU MPUHATUM PELLUEHUA UCKYCCTBEHHbIM WHTENNIEKTOM
M yyeTa 3TUYECKUX COOBPaXKeHU U MpaBW1 ero BHeLPEHMS.
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