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Abstract
Objective: to identify the hidden ecological costs associated with 
the elaboration, implementation and development of artificial intelligence 
technologies, in order to ensure its sustainable and harmonious integration 
with various economic sectors by identifying optimal moral-ethical and 
political-legal strategies. 

Methods: the conducted research is based on an ecological approach 
to the development and implementation of artificial intelligence, as well as 
on an interdisciplinary and political-legal analysis of ecological problems 
and risks of algorithmic bias, errors in artificial intelligence algorithms and 
decision-making processes that may exacerbate environmental inequalities 
and injustice towards the environment. In addition, analysis was performed 
in regard to the consequences of natural ecosystems destruction caused by 
the development of artificial intelligence technologies due to the computing 
energy-intensiveness, the growing impact of data centers on energy 
consumption and problems with their cooling, the electronic waste formation 
due to the rapid improvement of equipment, etc.

Results: the analysis shows a range of environmental, ethical and political-
legal issues associated with the training, use and development of artificial 
intelligence, which consumes a significant amount of energy (mainly from 
non-renewable sources). This leads to an increase in carbon emissions and 
creates obstacles to further sustainable ecological development. Improper 
disposal of artificial intelligence equipment exacerbates the problem 
of e-waste and pollution of the planet, further damaging the environment. 
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Errors in artificial intelligence algorithms and decision-making processes 
lead to environmental injustice and inequality. AI technologies may disrupt 
natural ecosystems, jeopardizing wildlife habitats and migration patterns.

Scientific novelty: the environmental consequences of the artificial 
intelligence use and further development, as well as the resulting 
environmental violations and costs of sustainable development, were 
studied. This leads to the scientific search for optimal strategies to minimize 
environmental damage, in which legal scholars and lawyers will have 
to determine ethical-legal and political-legal solutions at the national and 
supranational levels.

Practical significance: understanding the environmental impact of AI 
is crucial for policy makers, lawyers, researchers, and industry experts 
in developing strategies to minimize environmental harm. The findings 
emphasize the importance of implementing energy efficient algorithms, 
switching to renewable energy sources, adopting responsible e-waste 
management practices, ensuring fairness in AI decision-making and taking 
into account ethical considerations and rules of its implementation.
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Introduction

Artificial intelligence (AI) has emerged as a powerful and transformative force, revolutionising 
various aspects of human lives, from healthcare to transportation, and from customer 
service to financial systems. With its ability to process vast amounts of data and learn from 
patterns, AI has opened up new frontiers of innovation and efficiency. However, as society 
marvels at the advancements brought by AI, it becomes crucial to recognise and examine 
the hidden ecological cost associated with this technological revolution.

As the demand for AI applications grows, the energy consumption required to power 
the computational infrastructure also increases. According to a study conducted 
by Strubell et al. (2019), training a single state-of-the-art AI model can emit as much 
carbon dioxide as the lifetime emissions of five cars. Data centres, which are responsible 
for housing and running AI systems, contribute significantly to this energy consumption, 
often relying on non-renewable energy sources. The exponential growth of AI technology 
raises concerns about the long-term environmental impact, as the environmental cost 
associated with the AI revolution remains largely unnoticed and unaccounted for.

Moreover, the rapid evolution of AI hardware leads to shorter device lifecycles, resulting 
in a surge of electronic waste (e-waste). The Global E-waste Monitor 2020 report indicates 
that e-waste generation reached a record 53.6 million metric tonnes, with only 17.4 % 
being officially collected and recycled1. Improper management of outdated AI hardware 
components poses significant environmental risks, contributing to pollution and resource 
depletion.

Whilst AI presents immense potential for environmental monitoring and conservation 
efforts, its deployment can also disrupt natural ecosystems. Environmental monitoring 
drones and autonomous vehicles used for resource exploration, for example, have 
the potential to disturb wildlife habitats, interfere with migration patterns, and exacerbate 
ecosystem imbalances. The unintended consequences of AI on biodiversity and 
ecosystems necessitate careful consideration to ensure responsible and sustainable 
deployment.

In light of these concerns, it becomes essential to delve deeper into the environmental 
footprint of AI and explore strategies for mitigating its negative ecological impacts. 
This article will examine various aspects of the ecological cost associated with AI, 
highlighting the need for energy-efficient algorithms, responsible e-waste management 
practices, sustainable data centre infrastructure, and ethical considerations in AI 

1 Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The global e-waste monitor 2020:  Quantities, flows and the 
circular economy potential. United Nations University (UNU), International Telecommunication Union (ITU) 
& International Solid Waste Association (ISWA). Bonn; Geneva; Rotterdam.
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decision-making. By shedding light on these issues, it aims to foster discussions and 
actions that lead to a more environmentally conscious approach to AI development  
and deployment. 

1. Energy consumption 

As society continues to harness the power of AI, it becomes imperative to acknowledge and 
tackle the substantial energy consumption that accompanies this technological revolution. 
This section explores the energy-intensive nature of AI computations, the significant energy 
demands of data centers, and the concerning reliance on non-renewable energy sources. 
By shedding light on the hidden ecological costs of the AI revolution, we can gain a deeper 
understanding of the environmental implications associated with AI’s remarkable impact 
on various domains of human life.

AI computations are known for their substantial energy requirements due to the 
processing of vast amounts of data and the execution of complex algorithms. Training 
state-of-the-art AI models, in particular, consumes a significant amount of energy, with large-
scale models consuming as much energy as hundreds of megawatt-hours, equivalent to the 
energy required to power thousands of homes for several months (Strubell et al., 2019). 
The computational demands and iterative processes involved in training AI models 
contribute to their high energy consumption. These energy requirements are driven by 
the need to process large datasets, perform complex matrix operations, and optimise 
model parameters through multiple iterations. Understanding the energy footprint of AI 
computations is essential for comprehending the environmental impact associated with 
their widespread adoption.

Data centers play a vital role in supporting AI systems by housing and running 
the computational infrastructure. However, they contribute significantly to the overall 
energy consumption of AI. These facilities require substantial electricity to power 
servers, cooling systems, and networking equipment. The high-performance computing 
capabilities necessary for AI computations result in increased energy demands for 
data centers. Hanus et al. (2023) underscore the energy-intensive nature of data 
centers and the challenges they face in achieving energy efficiency. The growth of AI 
technology has led to an increase in the number and size of data centers, amplifying their 
environmental impact. The inefficient utilisation of computing resources and cooling 
systems in data centers further exacerbates their energy consumption and environmental  
footprint.

A pressing concern regarding AI’s energy consumption is the reliance on non-renewable 
energy sources. Conventional power grids, often fueled by fossil fuels, are the primary sources 
of electricity for AI computations. This reliance on non-renewable energy exacerbates 
greenhouse gas emissions and environmental challenges. Şerban et al. (2020) stress the 
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importance of transitioning to renewable energy sources for sustainable AI infrastructure. 
Incorporating renewable energy solutions, such as solar or wind power, in data centers 
can reduce the carbon footprint of AI systems and mitigate their environmental impact. 
The adoption of renewable energy technologies not only reduces greenhouse gas emissions 
but also promotes the development of a more sustainable energy infrastructure to support 
the growing demands of AI computations.

1.1. The energy-intensive nature of AI computations

The energy-intensive nature of AI computations has become a growing concern due to the 
significant energy requirements associated with training and running sophisticated AI 
models (Henderson et al., 2018). As AI applications continue to advance and become more 
complex, the demand for computational power has skyrocketed, leading to increased energy 
consumption.

One primary contributor to the energy consumption of AI computations is the training 
phase. Training a deep learning model involves feeding vast amounts of data into neural 
networks, which then adjust their internal parameters through iterative processes to optimise 
performance. This training process often requires multiple iterations over large datasets, 
utilising powerful hardware infrastructure such as graphics processing units (GPUs) 
or specialised tensor processing units (TPUs) (Strubell et al., 2019).

These hardware components are highly energy-intensive, consuming significant 
amounts of electricity to perform the complex calculations necessary for training AI models. 
The energy consumption during training can range from several hundred kilowatt-hours 
(kWh) to several thousand kWh, depending on the size and complexity of the model, the size 
of the dataset, and the hardware infrastructure used (Schwartz et al., 2020).

For example, a study by Schwartz et al. (2020) estimated that training a single state-of-
the-art language model can emit as much carbon dioxide as the lifetime emissions of five 
cars. This highlights the substantial environmental impact associated with the energy 
consumption of AI computations.

In addition to the training phase, the deployment and inference of AI models also 
contribute to energy consumption. Once a model is trained, it needs to be deployed and 
run on various devices or cloud servers to make predictions or perform specific tasks 
in real-time. This inference phase also requires computational resources, although typically 
less intensive compared to training. However, when AI models are deployed at scale, 
the cumulative energy consumption can still be substantial (Strubell et al., 2019).

The energy-intensive nature of AI computations raises concerns about the environmental 
impact and sustainability of AI technologies. As AI applications continue to proliferate 
across industries and sectors, the demand for computational resources will only increase, 
leading to even higher energy consumption. It becomes crucial to explore energy-efficient 
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computing architectures, develop algorithms that minimise computational requirements, 
and adopt renewable energy sources to power AI infrastructure (Ding et al., 2021).

Efforts are underway to address these challenges. Researchers and industry experts 
are actively working on developing more energy-efficient algorithms and hardware 
architectures, exploring techniques such as model compression, quantisation, and 
distributed training. These approaches aim to reduce the computational requirements of AI 
models without significantly compromising performance (Ding et al., 2021). Furthermore, 
there is an increasing focus on optimising data centre operations and adopting renewable 
energy sources to power AI infrastructure, reducing the carbon footprint associated with AI 
computations (Strubell et al., 2019).

1.2. Data centers: Energy hogs of the AI infrastructure

Data centers play a critical role in supporting the AI infrastructure, serving as the 
backbone for storing and processing vast amounts of data. However, these data centers 
are also significant energy consumers, raising concerns about their environmental impact 
(Dhar, 2020).

Data centers house the servers, networking equipment, and storage systems required 
to handle the computational demands of AI workloads. These facilities operate around 
the clock, consuming substantial amounts of electricity for powering and cooling 
the equipment, as well as providing uninterruptible power supply systems (UPSS) 
for backup (Shah et al., 2010).

The energy consumption of data centers is driven by various factors, including the number 
and efficiency of servers, the cooling systems, and the overall infrastructure design. Server 
racks and cooling equipment consume a significant portion of the energy, with cooling alone 
accounting for up to 40% of the total energy consumption (Masanet et al., 2020). A study 
estimated that data centers globally consumed approximately 196 to 400 terawatt-hours 
(TWh) of electricity in 2020, accounting for about 1 % of the global electricity consumption2. 
The energy efficiency of data centers has become a major focus in reducing their 
environmental footprint. Efforts are underway to improve server efficiency, optimize cooling 
systems, and design data centers with energy-efficient principles in mind. Techniques such 
as server virtualization, advanced cooling technologies, and power management strategies 
are being implemented to enhance energy efficiency (Shah et al., 2010).

Furthermore, there is a growing interest in adopting renewable energy sources to power 
data centers. Many companies are investing in renewable energy projects and purchasing 
renewable energy certificates (RECs) to offset their electricity consumption (Dhar, 2020). 
For example, Google announced in 2017 that it had achieved a milestone of purchasing 

2 Garcia, C. (2022). The Real Amount of Energy A Data Center Uses. https://clck.ru/36kxEN
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enough renewable energy to match 100 % of its global electricity consumption for its data 
centers and offices3.

To address the energy challenges posed by data centers, industry collaborations, 
government regulations, and research initiatives are being established. These efforts aim 
to develop standards, promote best practices, and encourage the adoption of energy-
efficient technologies in data center operations (Shah et al., 2010). In the UK, the Data Centre 
Alliance is actively working to drive energy efficiency improvements and sustainability in the 
data center industry4.

1.3. Non-renewable energy sources and carbon emissions

The reliance of AI infrastructure on non-renewable energy sources has significant implications 
for carbon emissions and the overall environmental impact. The generation of electricity 
from fossil fuels, such as coal and natural gas, contributes to greenhouse gas emissions 
and exacerbates climate change (Ram et al., 2018). In fact, the carbon emissions from data 
centers alone are estimated to rival those of the aviation industry5.

Data centers, which house the computational infrastructure for AI, are known to be 
energy-intensive facilities. They require substantial amounts of electricity to power 
the servers, cooling systems, and other supporting infrastructure. In many regions, the grid 
electricity used to power data centers predominantly comes from non-renewable sources. 
For example, in the United Kingdom, a significant portion of the electricity generation still 
relies on fossil fuels6. 

The carbon emissions associated with non-renewable energy sources directly contribute 
to the carbon footprint of AI systems. A study by Rolnick et al. (2022) estimated that training 
a large AI model can emit as much carbon as an average American car over its entire lifetime. 

To address these concerns, there is a growing movement within the AI community 
to transition towards renewable energy sources and reduce carbon emissions. Several 
major technology companies, including Microsoft and Amazon, have made commitments 
to achieve carbon neutrality and rely on renewable energy for their data centers7.

Moreover, governments and organizations are taking steps to promote the adoption 
of renewable energy in the AI sector. The European Union, for instance, has set targets 

3 Google. (2021). Google reaches 100% renewable energy goal. https://clck.ru/36kxG4
4 Data Centre Alliance. (n.d.). About the DCA. https://clck.ru/36kxHA
5 Lim, S. (2022, July 14). Media industry’s pollution equivalent to aviation, study finds. Campaign. https://

clck.ru/36kxHu
6 Department for Business, Energy & Industrial Strategy. (2020). BEIS Electricity Generation Costs. https://

clck.ru/36kxKS
7 Microsoft. (2022). Microsoft announces plan to be carbon negative by 2030. https://clck.ru/36kxLJ ; See 

also Amazon. (n.d.). Amazon and Global Optimism announce The Climate Pledge. https://clck.ru/36kxMP
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to increase the share of renewable energy and reduce greenhouse gas emissions in its 
member states8. 

Additionally, research efforts are focused on developing energy-efficient algorithms 
and hardware designs to minimise energy consumption and carbon emissions during 
AI computations. Techniques like model compression, quantisation, and specialised 
hardware architectures are being explored to optimise the energy efficiency of AI systems 
(Strubell et al., 2019).

1.4. Exploring the need for energy-efficient AI algorithms and hardware

As the demand for AI continues to grow, there is a pressing need to develop energy-efficient 
algorithms and hardware to mitigate the environmental impact of AI computations. The 
energy consumption of AI systems is a significant concern, considering the carbon emissions 
associated with non-renewable energy sources (Rolnick et al., 2022).

Researchers are actively exploring techniques to improve the energy efficiency 
of AI algorithms. Model compression, for instance, aims to reduce the computational 
requirements of deep neural networks by pruning unnecessary connections or reducing 
the precision of weights and activations (Han et al., 2015). This approach can significantly 
decrease the energy consumption and inference time without sacrificing model 
performance.

Another approach is quantisation, which involves representing numerical values 
with fewer bits. By reducing the precision of parameters and activations, quantisation 
reduces memory usage and computational complexity, leading to energy savings during 
both training and inference (Hubara et al., 2016). Efforts are also being made to improve 
the energy efficiency of training algorithms. Gradient compression techniques, such as 
sparsification and quantisation, aim to reduce the communication overhead between 
distributed devices during distributed training, thus decreasing the energy consumption 
(Alistarh et al., 2017). Additionally, advancements in optimisation algorithms and learning 
rate schedules can minimise the number of training iterations required, resulting in energy 
savings (You et al., 2017).

The development of energy-efficient AI hardware is also a crucial aspect of mitigating 
energy consumption. Traditional computing architectures are often not optimised for AI 
workloads, leading to inefficient energy usage. To address this, researchers are exploring 
new hardware designs, including neuromorphic computing and memristive devices, which 
mimic the structure and functioning of the human brain, offering potential energy efficiency 
improvements (Merolla et al., 2014; Prezioso et al., 2015).

8 European Commission. (n.d.). EU Climate Action. https://clck.ru/36kxSS
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2. Electronic Waste Generation

In addition to the energy-intensive nature of AI computations, the hardware used in AI 
systems also contributes to another significant environmental challenge: electronic waste 
generation. The rapid pace of technological advancement and the constant need for 
more powerful hardware result in a high turnover rate, leading to a growing accumulation 
of electronic waste (Ferro et al., 2021).

AI hardware, including GPUs, application-specific integrated circuits (ASICs), and other 
specialised components, have relatively short lifespans due to the relentless progress 
in technology. As newer generations of hardware are developed, older ones quickly become 
obsolete and are often discarded, exacerbating the issue of electronic waste9.

The disposal of AI hardware contributes to the release of hazardous substances 
and materials into the environment when not properly managed. These substances can 
contaminate soil, water, and air, posing risks to human health and ecosystems. The improper 
disposal of electronic waste not only leads to environmental degradation but also wastes 
valuable resources embedded in the hardware. Moreover, the disposal of hardware that 
contains toxic materials such as lead, mercury, and flame retardants can further contribute 
to pollution if not handled properly10.

To tackle the issue of electronic waste generation in the AI industry, it is crucial 
to implement sustainable practices. One approach is to promote the reuse and recycling 
of AI hardware. By refurbishing and remanufacturing older hardware, its lifespan can be 
extended, reducing the need for constant production of new devices (Ferro et al., 2021). 
Additionally, implementing take-back programs and establishing recycling facilities ensure 
that discarded hardware is properly managed and valuable materials are recovered for 
reuse11. 

In the design and manufacturing of AI hardware, eco-friendly principles should be 
embraced. Using materials with lower environmental impacts, designing for recyclability, 
and reducing the presence of hazardous substances can contribute to a more sustainable 
hardware lifecycle. Adopting modular designs that allow for component replacement and 
upgrading can also help prolong the usefulness of AI hardware, reducing the frequency 
of complete device replacement (Ferro et al., 2021).

9 Baldé, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitor 2017: Quantities, 
flows and resources. United Nations University, International Telecommunication Union, and International 
Solid Waste Association.

10 Ibid.
11 Ibid.



941

Journal of Digital Technologies and Law, 2023, 1(4)                                                                           eISSN 2949-2483 

https://www.lawjournal.digital   

2.1. The rapid pace of AI hardware advancements 

The hardware technologies in the field of AI are undergoing rapid advancements, fueled 
by continuous innovation that leads to the creation of increasingly powerful and efficient 
AI systems (Amodei et al., 2016). A notable development in AI hardware is the evolution 
of GPUs into a key component for AI computations. Originally designed for graphics 
rendering, GPUs have found extensive adoption in AI due to their ability to handle parallel 
processing tasks effectively (Amodei et al., 2016). Their high throughput and computational 
power make them well-suited for training and running AI models.

Furthermore, specialised hardware known as ASICs has emerged to cater specifically 
to AI workloads. ASICs offer improved performance and energy efficiency by customising 
the hardware architecture to optimise AI algorithm execution (Amodei et al., 2016). These 
dedicated AI chips provide higher computational density and faster processing speeds 
compared to general-purpose processors.

The rapid advancements in AI hardware have been instrumental in enabling significant 
breakthroughs across various AI applications. In computer vision, for example, 
the availability of high-performance hardware has facilitated complex image recognition and 
object detection tasks with remarkable accuracy (Amodei et al., 2016). Similarly, in natural 
language processing, powerful hardware accelerates the training and inference of language 
models, enabling applications such as machine translation and sentiment analysis.

However, the swift progress in AI hardware also brings challenges. The rapid turnover 
of hardware due to newer generations becoming available leads to a significant accumulation 
of electronic waste. Outdated hardware components contribute to the growing e-waste 
problem, requiring proper disposal and recycling measures to minimise environmental 
impact (Ferro et al., 2021).

The continuous introduction of new AI hardware also presents a learning curve for 
developers and researchers. Staying up to date with the latest hardware technologies 
demands constant adaptation, training, and investment, posing challenges for those 
involved in AI development (Amodei et al., 2016). Furthermore, optimising AI algorithms and 
software to leverage the capabilities of different hardware architectures adds complexity 
to the development process.

2.2. Device lifecycles and the E-waste predicament

The rapid advancement of AI technologies has led to a proliferation of electronic devices, 
resulting in a concerning rise in electronic waste, or e-waste, which poses significant 
environmental and health risks12. The lifecycles of AI hardware play a crucial role in determining 
the extent of e-waste generated and the environmental impact associated with it.

12 Ibid.
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The lifecycle of AI hardware begins with the extraction of raw materials and 
the manufacturing process. The production of AI devices involves the extraction of precious 
metals, rare earth elements, and other valuable materials, many of which are non-renewable 
and require substantial energy inputs (Ferro et al., 2021). The extraction and processing 
of these materials contribute to environmental degradation and often involve hazardous 
substances that can harm ecosystems and human health.

As AI hardware advances rapidly, the lifecycle of devices becomes shorter, with newer 
models frequently replacing older ones. This phenomenon, known as planned obsolescence, 
exacerbates the e-waste predicament, as outdated AI devices are discarded, leading 
to a significant accumulation of electronic waste13. E-waste contains hazardous components 
such as lead, mercury, and flame retardants, which can leach into the environment and 
contaminate soil, water sources, and air if not properly managed.

The improper disposal and inadequate recycling of e-waste further compound the 
problem. Many electronic devices end up in landfills or are incinerated, releasing toxic 
substances and contributing to air and soil pollution14. Inadequate recycling practices also 
result in the loss of valuable resources that could be recovered and reused.

Policymakers play a crucial role in establishing regulations and incentives to promote 
proper e-waste management. Policies such as extended producer responsibility (EPR) can 
hold manufacturers accountable for the environmental impact of their products throughout 
their lifecycle, encouraging them to adopt sustainable practices and invest in recycling 
infrastructure15. Additionally, the development of effective collection systems, recycling 
programmes, and refurbishment initiatives can help divert AI devices from landfills and 
promote their reuse.

The circular economy approach offers a promising solution to the e-waste predicament. 
It emphasises the reuse, refurbishment, and recycling of electronic devices, aiming to minimise 
resource consumption and environmental impact (Ferro et al., 2021). By adopting circular 
economy principles, AI hardware can be designed and managed in a way that maximises its 
lifespan and reduces the need for constant upgrades, thus mitigating the generation of e-waste. 

2.3. Strategies for responsible e-waste management in AI

In order to address the environmental concerns associated with electronic waste generated 
by AI hardware, several strategies have been proposed to promote responsible e-waste 

13 Baldé, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitor 2017: Quantities, 
flows and resources. United Nations University, International Telecommunication Union, and International 
Solid Waste Association.

14 Ibid.
15 Ibid.
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management throughout the AI lifecycle. These strategies aim to mitigate the adverse 
impacts of e-waste disposal and contribute to a more sustainable approach to AI 
technology.

1. Incorporating Design for Disassembly (DfD) and Design for Recycling (DfR) principles 
in the design and manufacturing of AI hardware can facilitate the efficient separation and 
recycling of components. By ensuring that devices are designed with ease of disassembly 
and recyclability in mind, the amount of e-waste generated can be reduced.

2. The concept of Extended Producer Responsibility holds manufacturers accountable 
for the entire lifecycle of their products, including their proper disposal (Kahhat et al., 2008). 
Implementing EPR regulations specific to AI hardware can incentivize manufacturers 
to design products with recyclability in mind and take responsibility for their environmentally 
sound disposal and recycling.

3. Establishing effective take-back and recycling programs is crucial for facilitating 
the responsible disposal of AI hardware. Manufacturers can collaborate with specialised 
e-waste recyclers or set up collection points to ensure the proper recycling of AI devices and 
prevent them from ending up in landfills or informal recycling facilities.

Embracing the principles of a circular economy can help minimise e-waste generation 
by promoting resource efficiency and product reuse (Geissdoerfer et al., 2017). Strategies 
such as refurbishing and repurposing AI hardware, as well as creating secondary markets 
for used devices, can extend the lifespan of AI systems and reduce the need for new 
production.

Continued research and development of advanced recycling technologies are 
essential for improving the efficiency and effectiveness of e-waste recycling (Widmer et al., 
2005). Innovations such as hydrometallurgical and biotechnological processes can extract 
valuable materials from AI hardware while minimising environmental impact and reducing 
the reliance on traditional extraction methods.

By implementing these strategies, responsible e-waste management practices can 
be integrated into the AI industry, leading to a more sustainable approach to AI hardware 
production, use, and disposal.

3. Data Centre Infrastructure

Data centres have witnessed significant growth in recent years due to the increasing demand 
for digital services. This expansion has resulted in a heightened environmental impact. 
The construction and operation of data centres require substantial land and resources, 
contributing to land use changes and habitat destruction (Mell & Grance, 2011). Moreover, 
the proliferation of data centres in urban areas has raised concerns about their impact 
on local communities and infrastructure.
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Data centres are renowned for their high energy consumption. The constant operation 
of servers, networking equipment, and cooling systems demands a considerable amount 
of electricity. Cooling data centres poses particular challenges. The heat generated by servers 
and other IT equipment needs efficient dissipation to maintain optimal operating conditions. 
However, traditional cooling methods, such as air conditioning, are energy-intensive and 
inefficient. This has prompted the exploration of innovative cooling technologies, including 
liquid cooling and advanced airflow management systems, to enhance energy efficiency 
and reduce the environmental impact of data centres (Masanet et al., 2020).

Water is a vital resource used in data centres for cooling purposes. However, 
the substantial water consumption of data centres can strain local water resources, 
especially in regions already grappling with water scarcity or competing demands. Cooling 
towers, relying on evaporation, can consume significant volumes of water. 

To address the environmental impact of data centres, industry stakeholders are actively 
exploring and implementing sustainable practices. These practices include:

Energy-efficient design: Data centres can adopt energy-efficient design principles, such 
as optimising server utilisation, improving power distribution systems, and utilising energy-
efficient hardware. These measures can significantly reduce energy consumption and 
carbon emissions (Beloglazov et al., 2011).

Transitioning to renewable energy sources, such as solar or wind power, can assist 
data centres in reducing their dependence on fossil fuels and decreasing greenhouse gas 
emissions. 

Rather than dissipating the heat generated by data centres, waste heat can be 
captured and utilised for other purposes, such as heating buildings or generating electricity. 
This approach maximises the energy efficiency of data centres and reduces their overall 
environmental impact.

Implementing water-efficient cooling technologies, such as closed-loop cooling 
systems and water-saving cooling towers, can help reduce water consumption in data 
centres. Additionally, recycling and reusing water within data centre operations can minimise 
the strain on local water resources.

By adopting these sustainable practices, data centres can strike a balance between 
meeting the increasing demand for digital services and minimising their environmental 
impact, contributing to a more sustainable and responsible digital infrastructure.

4. Understanding biases in AI training data

AI algorithms heavily rely on training data to make informed decisions. However, 
these datasets can often contain inherent biases, which can lead to biased outcomes 
in environmental decision-making. Biases in training data can arise from various sources, 
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including historical data reflecting existing societal inequalities and systemic biases 
(Caliskan et al., 2017). It is crucial to recognise and address these biases to ensure fair 
and equitable environmental decision-making processes.

Biased AI applications in environmental decision-making can exacerbate existing 
environmental disparities faced by marginalised communities. For example, if AI algorithms 
are trained on datasets that disproportionately represent affluent areas, decisions 
regarding resource allocation or environmental policies may neglect the needs and 
concerns of marginalised communities (Benjamin, 2019). This further marginalises these 
communities, perpetuating environmental injustices.

Biased AI applications can perpetuate and amplify inequalities by reinforcing 
existing social, economic, and environmental disparities. For instance, if AI algorithms 
are biased against certain demographics or geographic areas, it can lead to unequal 
distribution of environmental benefits, such as access to clean air, water, or green 
spaces. Furthermore, biased algorithms can result in discriminatory outcomes, such 
as disproportionate pollution burdens or inadequate environmental protections 
in marginalised communities.

To mitigate the biases and promote fairness in AI environmental decision-making, 
several measures need to be taken:

It is essential to ensure that AI training datasets encompass diverse perspectives 
and accurately represent the affected communities. This requires careful curation of data 
to address underrepresentation and avoid reinforcing existing biases (Sweeney, 2013).

Developing AI algorithms that are transparent and explainable allows for scrutiny 
and identification of biases. This helps stakeholders, including affected communities, 
to understand how decisions are made and challenge potential biases (Burrell, 2016).

Continual monitoring and evaluation of AI systems are crucial to identify and rectify 
biases that may emerge over time. This involves ongoing assessment of AI applications’ 
impacts on different populations and their alignment with equity and fairness goals 
(Crawford & Calo, 2016).

Involving affected communities in the design, implementation, and evaluation of AI 
environmental decision-making processes can help ensure fairness and equity.

By addressing biases in AI training data, acknowledging environmental disparities 
faced by marginalised communities, and implementing measures to promote 
fairness and equity, it is possible to mitigate the risks of AI amplifying environmental 
injustices. Responsible and inclusive AI applications can support informed and 
equitable decision-making processes that contribute to a more just and sustainable  
environment for all.
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5. Disruption of Natural Ecosystems

The expansion of AI technologies and their integration into various sectors has raised 
concerns about their potential impact on natural ecosystems. One area of concern is 
the disruption of wildlife habitats and migration patterns. AI-driven infrastructure, such as 
the construction of data centers and communication networks, often requires significant 
land use, leading to habitat fragmentation and loss. This disruption can have adverse effects 
on wildlife populations by limiting their access to resources and disrupting crucial migration 
routes, ultimately posing a threat to biodiversity and ecological resilience.

The use of AI for environmental monitoring and conservation presents both opportunities 
and challenges. On one hand, AI enables efficient data collection, analysis, and interpretation, 
thereby enhancing our understanding of biodiversity, climate change, and ecosystem health. 
It enables us to detect patterns, make predictions, and inform conservation strategies. 
On the other hand, an overreliance on AI may result in a reduction in field-based research 
and human involvement, potentially overlooking the nuanced ecological processes that can 
only be observed through direct observation (Koh & Wich, 2012).

To mitigate the ecological disruption caused by AI, it is crucial to adopt responsible 
deployment practices. This includes conducting comprehensive environmental impact 
assessments before implementing AI technologies, evaluating potential risks to ecosystems, 
and identifying appropriate mitigation strategies. Moreover, it is important to integrate AI 
into existing conservation strategies and involve local communities in decision-making 
processes. This participatory approach fosters a holistic understanding of ecological 
systems and facilitates the co-design of AI applications that benefit both biodiversity and 
human well-being.

6. Existing Regulations Related to AI’s Environmental Impact 
in the European Union

The growth of artificial intelligence has prompted governments and regulatory bodies 
to address its potential environmental impact. Some countries and regions have already 
taken steps to regulate the ecological cost of AI. 

In the European Union, the EcoDesign Directive (2009/125/EC) has been extended 
to cover servers and data storage products since March 2020. This regulation sets minimum 
energy efficiency requirements for these products, including those used in AI hardware. 
It aims to reduce energy consumption and curb the environmental impact of data centers 
and other AI infrastructure components16.

16 Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a 
framework for the setting of ecodesign requirements for energy-related products (recast) (Text with EEA 
relevance). (2009). Official Journal of the European Union, L 285, 10–35. https://clck.ru/36kxU5
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Along with the EcoDesign Directive, the Waste Electrical and Electronic Equipment 
(WEEE) Directive plays a crucial role in the sustainable management of electronic waste, 
including AI hardware components. The WEEE Directive outlines rules for the proper 
handling and disposal of electronic waste, ensuring that discarded AI hardware is managed 
in an environmentally responsible manner. The responsibility for the collection and recycling 
of e-waste is placed on manufacturers and users, promoting the circular economy and 
minimizing the environmental impact of AI hardware disposal17.

As part of the WEEE Directive’s evaluation process, a public consultation on the EU 
Directive on waste electrical and electronic equipment was scheduled for June 2023. 
This consultation allows stakeholders and the public to provide feedback and input on the 
effectiveness and future improvements of the WEEE Directive. 

The European Union has also implemented the Regulation (EU) 2019/424 on the eco-
design requirements for servers and data storage products. This regulation, which entered into 
force in March 2020, aims to set minimum energy efficiency requirements for these products, 
including those used in AI hardware, with the purpose of reducing energy consumption and 
curbing the environmental impact of data centers and other AI infrastructure components18.

These regulations within the European Union demonstrate the commitment to address 
the environmental impact of artificial intelligence and promote sustainable practices in 
the technology sector. By setting energy efficiency standards and promoting responsible 
e-waste management, the EU aims to foster a greener and more environmentally friendly 
approach to AI development and deployment.

Conclusion

In conclusion, when reflecting on the hidden ecological cost of AI, it becomes evident 
that we must acknowledge and address the environmental implications that come 
with its development and integration. The energy-intensive nature of AI computations, 
the generation of electronic waste, the disruption of natural ecosystems, and the potential 
for biased decision-making all highlight the need for proactive measures. By recognising 
the importance of sustainable practices such as energy-efficient algorithms, transitioning 
to renewable energy sources, responsible e-waste management, and ethical considerations, 
we can strive towards a more harmonious and environmentally conscious integration of AI.

17 Consolidated text: Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on 
waste electrical and electronic equipment (WEEE) (recast) (Text with EEA relevance). https://clck.ru/36kxYS

18 Commission Regulation (EU) 2019/424 of 15 March 2019 laying down ecodesign requirements for 
servers and data storage products pursuant to Directive 2009/125/EC of the European Parliament and of 
the Council and amending Commission Regulation (EU) No 617/2013 (Text with EEA relevance). (2019). 
Official Journal of the European Union, L 74, 46–66. https://clck.ru/36kxbm
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It is our collective responsibility to navigate the path towards a better future where 
AI benefits both humanity and the planet. By prioritising environmental sustainability 
and taking proactive steps to mitigate the ecological footprint of AI, we can create a future 
that harnesses its potential while preserving and protecting our natural resources. Through 
collaboration, research, and the development of policies and regulations, we can shape 
the evolution of AI towards a more sustainable and ethically sound direction.
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Аннотация
Цель: выявление скрытых экологических издержек, связанных 
с разработкой, внедрением и развитием технологий искусственно-
го интеллекта, с целью его устойчивой и гармоничной интеграции 
с различными секторами экономики путем определения оптимальных 
нравственно-этических и политико-правовых стратегий. 
Методы: в основе проведенного исследования лежит экологический 
подход к разработке и внедрению искусственного интеллекта, меж-
дисциплинарный и политико-правовой анализ экологических проблем 
и рисков алгоритмической предвзятости, ошибок в алгоритмах искус-
ственного интеллекта и процессах принятия решений, которые могут 
усугубить экологическое неравенство и несправедливость в отношении 
к окружающей среде. Кроме того, подвержены анализу вызванные раз-
витием технологий искусственного интеллекта последствия разрушений 
природных экосистем, обусловленные энергоемким характером связан-
ных с ним вычислений, растущим влиянием центров обработки данных 
на потребление энергии и проблем с их охлаждением, образование элек-
тронных отходов из-за быстрого совершенствования оборудования и др.
Результаты: проведенный анализ показывает разнообразие эко-
логических, этических и политико-правовых проблем, связанных 
с обучением, использованием и развитием искусственного интеллек-
та, потребляющего значительное количество энергии (в основном из 
невозобновляемых источников), что приводит к увеличению выбро-
сов углерода и создает препятствия для дальнейшего устойчивого 
экологического развития. Неправильная утилизация оборудования 
искусственного интеллекта усугубляет проблему электронных отхо-
дов, загрязнения планеты, еще больше нанося ущерб окружающей 
среде. Ошибки в алгоритмах искусственного интеллекта и процессах 
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принятия решений ведут к несправедливости в отношении окружаю-
щей среды и экологическому неравенству. Технологии искусственного 
интеллекта могут нарушать природные экосистемы, ставя под угрозу 
среду обитания диких животных и модели миграции. 
Научная новизна: исследование экологических последствий исполь-
зования и дальнейшего развития искусственного интеллекта, вызван-
ных в связи с этим экологических нарушений и издержек устойчивого 
развития позволяет определить научный поиск оптимальных страте-
гий минимизации вреда окружающей среде, в котором правоведам 
и юристам предстоит установить этико-правовые и политико-право-
вые решения на национальном и наднациональном уровнях.
Практическая значимость: понимание экологического воздействия ис-
кусственного интеллекта имеет решающее значение для политиков, юри-
стов, исследователей, отраслевых специалистов при разработке стра-
тегий минимизации вреда окружающей среде. Полученные данные 
подчеркивают важность реализации энергоэффективных алгоритмов, 
перехода на возобновляемые источники энергии, внедрения ответ-
ственной практики обращения с электронными отходами, обеспечения 
справедливости при принятии решений искусственным интеллектом 
и учета этических соображений и правил его внедрения. 
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